

Estudo de Impacte Ambiental

Elementos Adicionais

Ampliação da Piscicultura Flutuante Offshore da Ribeira Brava

Novembro de 2022

Op. n.º MAR-02.01.03-FEAMP-0103

INFORMAÇÃO SOBRE O DOCUMENTO E AUTORES

Cliente	AQUABAIA- Sociedade de Aquacultura das Ilhas, Lda.	
Referência do documento	T30-2017	
Descrição do Documento	Elementos Adicionais	
Fase	Projeto de Execução	
Referência do Ficheiro	T30-2017_EIA_Piscicultura_Offshore_Volume II_RS	
Nª de Páginas	15	
Autores Helena Coelho, Jonas Vasconcelos Filho		

Indice

1.	Introdução	5
	Elementos adicionais	
3.	Anexos	15
3.1.	Anexo I – Ofício DRAAC Nº 8069 de 06/10/2022 – pedido de Elementos Adcionais	15
3.2.	Anexo II – Inquérito de Aquicultura referente ao ano de 2021	15
3.3	Anexo III – Memória Descritiva CG1 (a) e Memória Descritiva CG2 (B)	15

Página intencionalmente deixada em branco

1. INTRODUÇÃO

Na sequência do processo de Avaliação de Impacte Ambiental do projeto "Ampliação da Piscicultura Flutuante Offshore da Ribeira Brava", apresentam-se as respostas ao pedido de elementos adicionais de acordo com o solicitado pela DRAAC (Ofício Nº 8069 de 06/10/2022, Anexo I).

Mais se informa que no âmbito da presente resposta procedeu-se à reedição do Resumo Não Técnico (RNT), e das Memórias Descritivas do Projeto de Execução, bem como à inclusão de uma adenda ao Relatório Síntese do EIA (Volume II), com vista à clarificação de alguns dos elementos solicitados e para melhor consolidação da informação apresentada.

2. ELEMENTOS ADICIONAIS

De seguida procede-se à apresentação do pedido de elementos, e respetiva resposta fundamentada, bem como da identificação da adaptação em conformidade nos elementos do projeto e/ou EIA, se e quando aplicável.

Denotou-se, no entanto, em matéria de conteúdo do EIA e respetivo projeto, as seguintes incongruências que devem ser clarificadas antes do prosseguimento da avaliação AIA:

- Uniformização do valor de produção atual, conforme licença de exploração;

Esclarece-se conforme declaração anual de produção entregue à DGRM no âmbito do inquérito de produção de 2021 (Anexo II), que o valor de produção atual se encontra conforme Licença de Exploração nº 1/2008 (Volume IV do EIA, Anexo II), apresentando-se abaixo do valor máximo de 800 ton/ano.

Mais se informa, como exposto no capítulo 3.2. do Relatório Síntese (Volume II do EIA, páginas 31 e subsequentes), que a capacidade instalada é de 840ton/ano devido à dimensão das jaulas, mas a produção efetiva (atual) é inferior.

Para o ano de 2021, usado como referência atual, a produção foi de aproximadamente 749 toneladas e em conformidade com o inquérito anual anexo ao presente documento (Anexo II),

Importa ainda distinguir os conceitos de:

- Produção atual, que corresponde à produção efetiva em exploração e que corresponde no máximo ao permitido pela licença de exploração em vigor (Licença nº 1/2008 – Volume IV do EIA, Anexo II);
- Capacidade instalada, que resulta da capacidade máxima de produção possível em resultado da capacidade de cada jaula, a qual por razões de operação é sempre superior à capacidade efetiva de ocupação/produção (em vigor com base no número e dimensão das jaulas instaladas, de acordo com TURH Licenças nº 319 e nº 359).

No Resumo Não Técnico (RNT) e no Relatório Síntese (RS) é feita referência a um valor superior, o qual é agora clarificado de acordo com declaração anexa. Neste sentido procedeu-se à reedição do RNT e à inserção de uma adenda ao RS (Volume II do EIA), com vista ao cabal esclarecimento da situação.

- Cumprimento do disposto no POAMAR relativamente à produção máxima admitida em cada uma das parcelas;

Esclarece-se no âmbito da presente solicitação que o projeto cumpre com o disposto no POAMAR, verificando-se que a produção máxima admitida para cada parcela após ampliação nunca é superior a 1200 toneladas de peixe de cultura.

Apresenta-se de seguida com vista ao cabal esclarecimento desta questão, os valores relativos à capacidade máxima instalada perspetivada com a ampliação, tendo em conta a capacidade individual de cada jaula (Quadro 2.1) e a evolução da capacidade produtiva (Quadro 2.2), por área.

Quadro 2.1 – Capacidade máxima instalada tendo em conta a capacidade individual de cada jaula (situação atual e futura por parcela).

Parcela	Número de jaulas	Ø jaula (m)	Ton/ jaula	Capacidade instalada total (toneladas)
	6	12	4,5	27
CG1	14	20	60	840
	4	33	80	320
CG2	16	25	70	1120

Quadro 2.2 – Evolução da capacidade produtiva (em máximo de produção estimado por parcela) (legenda: ¹ – dourada, ² – charuteiro).

Ano	Evolução da capacidade produtiva máxima para a CG1		Evolução da capacidade produtiva máxima para a CG2	
	%	Ton/ano	%	Ton/ano
0	20%	244 $(180^1 + 64^2)$	20%	224
1	74%	902,8 (666 ¹ + 236,8 ²)	74%	829
2	97%	$1010,4$ $(700^1 + 310,4^2)$	97%	1086
3	100%	1120 $(800^1 + 320^2)$	100%	1120

Procedeu-se à reedição do RNT e Memórias Descritivas do Projeto, conforme esclarecimento de conceitos e valores.

- Relativamente à memória descritiva, esclarecer a produção atual da CGL, conforme a declaração de produção anual;

Tal como exposto anteriormente, a produção atual da CG1 encontra-se conforme a declaração de produção anual (Anexo II ao presente documento, por referência ao último ano de produção 2021) e abaixo do limiar máximo admitido no âmbito da Licença de Exploração nº 1/2008, atualmente em vigor.

Para efeitos de clarificação foram reeditados o RNT e as Memórias Descritivas do Projeto.

- Apresentar plano de produção anual detalhado por espécie e por parcela, com referência ao tipo e quantidade de alimento utilizado;

O plano de produção anual detalhado foi desenvolvido e é integrado no âmbito da Memória Descritiva de cada uma das áreas – CG1 e CG2 (Anexo IIIa e Anexo IIIb).

De notar que o plano é apresentado numa perspetiva de desenvolvimento faseado, apresentando o plano para o ano 0, e ano 0 +1.

De salientar que ao longo do processo de produção, a carga animal máxima na CG1 corresponde a uma biomassa de 503 750 Kg, e para a CG2 a uma biomassa estimada de 779 594 Kg.

Em paralelo, a quantidade máxima de ração, para a CG1 será de 116 325 Kg e para a CG2 será de 196 824 Kg.

O plano integra ainda uma análise quantitativa do cálculo das cargas máximas de excreção de azoto (N) e fosforo (P) gerado pelo consumo de ração inerte, tendo em conta um contexto de capacidade máxima produtiva que é alcançada de acordo com os planos de produção individuais de cada área.

- Não estando quantificada a carga de sólidos que será administrada na fase de exploração do projeto, não existe uma estimativa de dispersão dos particulados (ração, pellets e fezes dos peixes em cultivo), pelo que esta lacuna deve ser suprida e considerada para a identificação e avaliação dos impactes ambientais. Nesta sequência, o EIA deverá assegurar um Programa de monitorização adequado aos impactes identificados sobre o fundo marinho e habitats, acomodando também a recomendação feita pelo relatório técnico Mare-ARDITI (2022).

Com vista ao cumprimento da solicitação foi aplicado um modelo de dispersão de partículas de ração e fezes, adaptado a partir do trabalho desenvolvido por Riera et al. 2017¹ para a Macaronésia, e recorrendo a um cenário extremo, que corresponde ao pior impacte esperado.

Modelo

O modelo utilizou os dados de velocidade e direção da corrente marinha para a área do projeto, assim como as velocidades médias relativas ao padrão de afundamento dos pellets de ração (9,83 ± 0,17 cm/s) e das fezes (1,85 ± 0,15 cm/s), de acordo com o definido por Riera et al. 2017.

A simulação considerada para efeitos de referência considera um cenário extremo em termos de carga animal, e por consequência de alimento, e tem por base a proposta de localização da alternativa 1 (não são esperadas variações significativas face às alternativas 2 e 3). Nesse sentido, o número de partículas simuladas foi de 1000 por jaula, sendo metade representando os pellets e a outra metade as fezes. As coordenadas iniciais destas partículas foram geradas aleatoriamente na superfície da água no interior da jaula em questão.

O modelo foi executado com base na influência destas variáveis nas coordenadas das partículas simuladas. As coordenadas das partículas foram recalculadas a cada cinco segundos e baseadas em números aleatórios, seguindo uma distribuição normal com média e desvio padrão de cada variável, e o ponto de paragem foi determinado para os 50 m de profundidade, assumindo a profundidade média da região. O substrato oceânico foi dividido numa grelha com 1146 x 811 células, cada uma com 5 x 5 m.

A carga animal por jaula, para efeitos da modelação, foi de 80% do número inicial, assumindo a mortalidade no cultivo e o crescimento corporal. O peso individual médio foi padronizado em 200g, a metade do peso comercial final (400g), e consumo diário de 1,45% do peso corporal com temperatura ambiente em 25° C.

A taxa de desperdício diário de ração utilizada foi 3,5% e a produção de fezes média foi definida como 2,5 vezes mais que o desperdício de ração diário tendo por referência o modelo de Riera et al., 2017.

¹ Rodrigo Riera, Óscar Pérez, Chris Cromey, Myriam Rodríguez, Eva Ramos, Omar Álvarez, Julián Domínguez, Óscar Monterroso, Fernando Tuya, MACAROMOD: A tool to model particulate waste dispersion and benthic impact from offshore sea-cage aquaculture in the Macaronesian region, Ecological Modelling, Volume 361, 2017, Pages 122-134, ISSN 0304-3800, https://doi.org/10.1016/j.ecolmodel.2017.08.006.

Resultados e avaliação do impacte nos fundos bentónicos

O modelo mostra que as áreas de maior acumulação de sólidos depositados (a vermelho na Figura 1), em função do cenário extremo, variam entre 3,0 e 3,5 kg/m²/ano e estão localizados em área muito limitada e sobreposta com o projeto. Verifica-se que o modelo aplicado é idêntico para as diferentes possíveis localizações, salvaguardando assim a sua utilização de forma inequívoca.

Com vista à avaliação do impacte sobre os fundos bentónicos, os resultados do modelo foram correlacionados com os valores do índice AMBI, usando por referência a correlação apresentada por Riera et al. 2017 para a Macaronésia. No Quadro 2.3 apresenta-se para cada intervalo modelado de fluxo de sólidos, o correspondente AMBI.

Figura 1 - Resultado do modelo de dispersão de partículas para o projeto, tendo por referência o posicionamento das jaulas na alternativa 1.

Página intencionalmente deixada em branco

Quadro 2.3 – Relação entre os valores de sólidos depositados (kg) por m²/ano esperados e o AMBI, estabelecida através da equação estimada por Riera et al. (2017) para a Macaronésia, e tendo por base os resultados obtidos a partir do cenário extremo.

Cálidao ka m² (ana	AMBI			
Sólidos kg/m²/ano	Coeficiente	Estado ecológico		
0,5 - 1,0	0,47 - 1,25	Excelente		
1,0 - 1,5	1,25 - 1,80	Bom		
1,5 - 2,0	1,80 - 2,13	Bom		
2,0 - 2,5	2,13 - 2,29	Bom		
2,5 - 3,0	2,29 -2,31	Bom		
3,0 - 3,5	2,31 - 2,52	Bom		

Riera et al (2017) demonstrou que valores elevados de carga orgânica, superiores a 12 kg/m²/ano tem um efeito negativo significativo no estado ecológico, produzindo um decréscimo claro no AMBI observado.

De acordo com o modelo, e a simulação de um cenário extremo, o máximo de fluxo de sólidos observado no projeto, em linha com o plano de produção proposto, será de 3,0 - 3,5 kg/m²/ano, muito inferior ao máximo determinado por Riera et al (2017) para a Macaronésia, **não sendo assim expectável que o mesmo venha a ter um impacte negativo significativo nos fundos bentónicos.** De acordo com a correlação estabelecida por Riera et al (2017) é esperado que o estado ecológico igual ou superior a Bom não seja afetado.

Assim, no que respeita aos fundos marinhos, os impactes previsivelmente relacionados com o aumento da produção de resíduos fecais dos peixes e o excedente da ração utilizada, que pode levar à deposição sobre os fundos considera-se um **impacte negativo**, mas **pouco significativo**, **com magnitude reduzida, provável, de âmbito local, e reversível,** para <u>todas as alternativas</u>.

De notar, que de acordo com os trabalhos desenvolvidos para avaliação da comunidade de macroinvertebrados bentónicos no âmbito do EIA não foi calculado o índice AMBI, mas sim o índice BENTIX. No entanto, os valores que se verificam na área, não evidenciaram variações significativas entre a área de impacte e controlo, verificando-se uma condição ecológica pobre a moderada, ainda que condicionada pela elevada tolerância do taxa dominante *Ditrupa arietina*.

Relacionado a situação atual observada, com o que é expectável de acordo com o demonstrado anteriormente pelo modelo, é ainda menos expectável que a área venha a apresentar uma afetação negativa significativa do estado ecológico.

Contudo, a recomendação do EIA é de que se mantenha uma monitorização ativa da situação, para a qual deve ser assegurado não só o registo da ração administrada mensalmente, como a evolução da comunidade de macroinvertebrados bentónicos, e os parâmetros físico-químicos de suporte relevantes.

Monitorização

O EIA propõe a execução de um Plano de Monitorização Ambiental, que integra a Monitorização da Qualidade da Água e em particular a evolução da composição e abundância dos macroinvertebrados bentónicos assim como de um conjunto relevante de parâmetros físico-químicos de suporte, dando continuidade à monitorização realizada no ano 0.

Considera-se que o Plano apresentado no EIA dá resposta ao pretendido, contudo e tendo presente que à data atual foi publicada a Resolução nº 995/2022 pelo Conselho do Governo Regional e que aprova a proposta de Decreto Legislativo Regional com vista a implementar o regime jurídico relativo à instalação e exploração dos estabelecimentos de culturas em águas marinhas, assim como o Programa de Monitorização Ambiental (PMA) para pisciculturas marinhas, considera-se que o mais adequado será que o Plano a implementar venha a ser adaptado em função do PMA, o que deverá ser proposto após publicação do respetivo decreto.

Neste sentido, deverá o promotor desenvolver o respetivo PMA em acordo com a legislação em vigor à data da construção do projeto.

3. ANEXOS

- 3.1. ANEXO I OFÍCIO DRAAC Nº 8069 DE 06/10/2022 PEDIDO DE ELEMENTOS ADCIONAIS
- 3.2. ANEXO II INQUÉRITO DE AQUICULTURA REFERENTE AO ANO DE 2021
- 3.3. ANEXO III MEMÓRIA DESCRITIVA CG1 (A) E MEMÓRIA DESCRITIVA CG2 (B)